
1

Introduction to CLIPS

Fact List
(contains data)

Knowledge
Base

(contains rules)

Inference
Engine

(controls execution)

Overview

v CLIPS is a programming language that
provides support for rule-based, object-
oriented and procedural programming.

v The search in the Inference Engine uses
forward chaining and rule prioritization.

v Looks like LISP (List Processing) with
object features.

2

Object Features

v CLIPS Object-Oriented Language (COOL) is a
hybrid of features found in Common Lisp Object
and SmallTalk.

v Example: object template or frame for a bearing
v (deftemplate bearing

(slot type) (slot size) (slot load) (slot lubrication) (slot
max_temperature). . .)

Car Frame or Template Example

Slots Fillers
Name car name
Type sedan, sports, station_wagon . .
Manufacturer GM, Ford, Chrysler, Toyota . . .
Owner Name of owner
Wheels 4, 6
Transmission manual, automatic
Engine gasoline, diesel, methanol
Condition lemon, OK, peach
Under-warranty no, yes

3

Car Instance Example

Slots Fillers
Name Alice’s car
Type station_wagon
Manufacturer GM
Owner Alice M. Agogino
Wheels 4
Transmission manual
Engine gasoline
Condition OK
Under-warranty yes

Notation

v Everything in parentheses is to be entered exactly
are shown within the parentheses. (exit) or (+ 6 3
2)

v Square brackets indicate that the contents are
optional. (example [1])

v Pointed brackets indicate that a replacement is to
be made with a value of the type specified within
the brackets. (example <integer>)

4

Elementary Math Operators

v Arithmetic
vAddition (+ 6 3 2)
vSubtraction (- 6 3 2)
vMultiplication (* 6 3 2)
vDivision (/ 6 3 2)

v Logical Arithmetic
v (> 6 3 2)
v (< 6 3 2)

Notation wild cards
v A * following a description indicates that the

description can be replaced with zero or one or more
occurrences of the value, separated by spaces. <integer
*>

v A + following a description indicates that the
description can be replaced with one or more
occurrences of the value, separated by spaces. <integer
*>

v <integer>+ is equivalent to <integer> <integer> *
v A vertical bar | indicates a choice among one or more of

the items separated by the bars.
v A | B | C means (A, B or C).

5

Fields

v Tolkens represent groups
of characters that have
special meaning in CLIPS.

v Fields or CLIPS primitive
data types are groups of
tokens.

v Seven types of Fields
v Float
v Integer
v Symbol
v String
v External address
v Instance name
v Instance address

Facts

v A “chunk” of information in CLIPS is called a
fact.

v Facts consist of a relation name followed by zero
or more slots and their associated values.

6

Deftemplate Construct

v A template for a fact needs to be defined in order
to determine the name and number and types of
slots.

v (deftemplate <relation-name> [<optional-
comment>] <slot-definition>*]

v (deftemplate apple “facts about the color of apples”
(slot color))

Multifield Slots

v Use multislot in cases where you want an
undefined zero or more “arity” to the slot.

v (deftemplate apple “facts about the color of apples”
(multislot color))

v (assert (apple (color red)))
v (assert (apple (color green)))
v (assert (apple (color red green)))

7

Adding and Removing Facts

v New facts are added with the assert command:
(assert <fact>+)

v Facts can be listed with: (facts)
v Facts are numbered sequentially starting with 1.

(fact 0 is baseline).
v Remove facts with: (retract <i>+)
v Facts can also be duplicated with slot

modifications (duplicate 0 (color brown)) .

Deffacts Construct

v Useful for automatically asserting a set of facts.
v Useful for defining initial knowledge.
v Assumes template of first item and single slots by

default.
v (deffacts apple “apple color facts”

(apple (color red))
(apple (color green)))

8

Watch Command

v The watch command is for debugging programs.
v (watch <watch-item>)
v <watch-item>):

vFacts or Rules
vActivations
vStatistics & Compilations
vFocus or all

Rules

v Rules are in the following form:
(defrule <rule name> [<comment>]
<patterns>* ; condition or left-hand side (LHS)
=> ; implies
<action>* ;action, consequence or right-hand side (RHS)

v (<patterns> => <action>*) or
(IF <patterns>* <action>*)

9

Manipulating Constructs

v Listing members of a construct:
v (list-defrules)
v (list-deftemplates)
v (list-deffacts)

v Display text of a construct with pp (pretty print
command):
v (ppdefrules <defrule-name>)
v (ppdeftemplates <deftemplates-name>)
v (ppdeffacts <deffacts-name>)

Deleting Constructs

v Delete a member by undefining:
v (undefrule <defrule-name>)
v (undeftemplates <deftemplates-name>)
v (undeffacts <deffacts-name>)

v Delete all with clear command: (clear)

10

Load, Save, Print, Break commands

v Load and Save files:
v (load <file-name>)
v (save <file-name>)

v printout command:
v (printout <logical-name> <print-items>*)
v Default is usually the terminal.

v The set-break command allows the execution to
be halted before a rule is fired: (set-break <rule-
name>)

Agenda and Execution

v A CLIPS program can be made to run with the
run command.
v (run [<limit>])
v Where the optional <limit> is the maximum number of

rules to be fired.

v Rules which can be activated are put on the
agenda list.

v The rule with the highest salience or priority on
the agenda is fired.

11

Pattern Matching: Rules and Facts

Agenda

Facts Rules
Inference

Engine

